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On the universal scaling of the dielectric relaxation in
dense media
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Abstract. We reconsider the idea of the universal scaling of theα relaxation and point out
what is the cause of the recent controversy concerning this concept. A necessary condition the
scaling relationship has to follow is presented. Consequently, we suggest that a generalized
scaling relationship, which is potentially able to account for the dielectric relaxation of low-
molecular-weight as well as polymeric glass-formers, is likely to be established. The generalized
scaling plot for the literature experimental data of several glass-forming systems (low molecular
weight and polymeric) is presented.

Glass-forming systems have been the subject of continued interest for decades. However,
despite the large number of experimental studies in numerous materials and much theoretical
effort, there is still no satisfactory fundamental theory of the glass transition.

It is well established that the asymptotic frequency dependence of the loss component
of dielectric susceptibility follows a common universal pattern for virtually all kinds of
materials [1]

ε′′(ν) ∝ νm for ν � νp

ε′′(ν) ∝ ν−n for ν � νp
(1)

where the parametersm and n (0 6 m 6 1, 0 6 n 6 1) characterize the shape of the
dielectric loss andνp is the maximum of the peak position. Such behaviour coheres with
theoretical approaches which have been developed in order to establish a more fundamental
physical picture of dielectric relaxation in condensed matter [2–4]. Along with the main
power-law region above the peak inε′′(ν), which is described byn, the second power-law
region, which is described by another exponentn′, is often observed in dielectric loss of
glass-formers.

Recently, a form of universality was discovered by Dixonet al [5], who found
that the dielectric spectra of several low-molecular-weight glass-forming liquids can
be collapsed onto a single scaling curve when plotted asw−1 log(ε′′νp/1 εν) against
w−1(1+ w−1) log(ν/νp), whereε′′ = ε′′(ν) is the loss part of the dielectric susceptibility,
ν the measuring frequency,1ε the relaxation strength, andw denotes the half-width of
the loss peak normalized to the half-width of the Debye peak. Although the authors of
[5] did not provide any theoretical underpinning, this scaling works amazingly well for
many low-molecular-weight systems [5–9]. Moreover, even the high-frequency deviation
(second power-law region above the peak inε′′) from the main characteristic is remarkably
universal in terms of the scaling [5–7]. Since the DC conductivity at low frequencies or the
β process at high frequencies may overlap the primary response, the precise determination of
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the parameters{1ε, νp, w} of the scaling is sometimes difficult. There has been also some
controversy concerning the correct subtraction of the DC conductivity [5, 9] (nevertheless
the argument is given in [9] that the subtraction of the DC conductivity does not strongly
influence the slope of the low-frequency side of the spectrum). However, this procedure
has become extensively applied to the analysis of the dielectric response in glass-forming
liquids [5–10]. The scaling expression has been used to argue that the static susceptibility
diverges in supercooled liquids [7].

On the other hand, the concept proposed in [5] has been criticized by a number of
authors. Scḧonhalset al [9] have pointed out that the validity of the scaling relationship is
restricted to the relaxation which follows the power-law rules withm ' 1 andw ' n−1, and
it fails at low frequencies whenm < 1. The great majority of low-molecular-weight glass-
forming liquids follows the behaviour withm ' 1; however the behaviour withm < 1 is also
reported [11, 12]. For polymeric systems, the latter type of relaxation is often reported [13].
Chamberlin [8] has proposed a modified scaling relationship for the systems characterized
by the Curie–von Schweidler (CvS) relaxation function8(t) ∝ (t/τ )−α (0 < α < 2; τ
is the relaxation time). This situation may suggest that the half-width of the peak as the
shape parameter is insufficient for the scaling in a wider class of materials and generally
two shape parameters are required.

Kudlik et al [12] have reported precise measurements of the dielectric loss in several
low-molecular-weight glass-formers, which show systematic discrepancies when plotted
on the scaling master plot suggested in [5]. In view of this finding, Lehenyet al [14]
have proposed a new interpretation of the scaling procedure (for the original interpretation
see figure 1 of [7] and explanations therein) and state that ‘each spectrum scales through
the optimization of three parameters—w, 1ε and νp ’. However, neither the method of
optimization of these parameters nor the reference curve against which to fit the data has
been given. Accordingly, no relationship which expresses the universality suggested in [5]
is known at the moment. The key question becomes whether such a relationship exists in
any case.

In this paper we show that the universality implied in [5] can be expressed in terms of
well defined parameters. Moreover, it can be generalized to account for the relaxation of
the low-molecular-weight and polymeric systems which follow the behaviour withm < 1.

Figure 1 shows a typical dielectric loss peak along with the curves representing the
power-law rules (1), for the low- (ν � νp) and high-frequency (ν � νp) limits (the latter
refers to the first power-law region above the peak inε′′). Evidently, these characteristics
are linear when plotted in a double-logarithmic plot (as in the inset to figure 1). The
parameterm determines the slope of the low-frequency characteristic and−n the slope of
the high-frequency one. The characteristic frequencyνs and dielectric lossεs are defined as
the frequency and dielectric loss corresponding to the intersection of these characteristics.
We show that the scaling relationship suggested in [5] can be rationalized when considering
a pair of power-law characteristics instead of the loss peak itself. At the level of generality
we are working with, we have decided to apply mathematical models of the relaxation rather
than experimental data, to illustrate the considerations.

First of all, we consider the relaxation showing the behaviour withm ' 1. The scaling
suggested in [5] is restricted strictly to this case. In the frequency domain, this kind of
relaxation is well described in terms of the Cole–Davidson (CD) empirical form, according
to which the complex dielectric susceptibilityε∗(ν) is given by

ε∗(ν)− ε∞
ε0− ε∞ =

(
1+ iν

ν0

)−n
(2)
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Figure 1. The frequency dependence of the dielectric lossε′′. Dashed lines represent the power
law rulesε′′ ∝ νm and ε′′ ∝ ν−n. Characteristic frequencyνs and characteristic absorptionεs
are determined by the intersection of the two power-law characteristics. The inset shows the
frequency dependence ofε′′ in a double-logarithmic photo.

ε0 andε∞ are the relaxed (ν = 0) and unrelaxed (ν = ∞) dielectric susceptibility values,
ν0 is the frequency related to the relaxation timeτ = (2πν0)

−1, and i = √−1. It is
evident that this form follows (1) withm = 1. The natural idea as to how to create the
scaling plot is to normalizeν by νs and ε′′ by εs . Figure 2(a) shows three dielectric loss
curves generated by (2) (with the half-width of the peaks ranging between 1.14 and 2.12)
normalized this way. The next step is the division ofε′′/εs by ν/νs as in the original
proposition. Lastly, multiplication of the logarithm on the horizontal axis by a factor of
(1+ n) results in a common curve at high frequencies. Figure 2(b) shows the loss curves
generated by (2) virtually collapsed onto a single scaling curve. The abscissa of the scaling
plot is (1+ n) log(ν/νs) and the ordinate is log(ε′′νs/εsν).

The good job done by the scaling form proposed by Dixonet al, as reported in a series
of experimental studies [5–8], is no surprise in the light of this finding. As long as the
relaxation followsm = 1 andw ' n−1, the form proposed here is analogous to the kernel
of the form suggested in [5]. One realizes that the parametersνs and εs are analogous to
their counterpartsνp and1ε from the original proposition. The parametern refers to the
first power-law region above the peak inε′′(ν), as forw. However, apart from the Debye
relaxation (when one can easily show thatνs = νp, εs = 1ε andn = w−1 = 1; both scaling
forms become identical) we cannot adjudicate whether or not the parametersνs andεs are
strictly equal toνp and1ε, since the actual susceptibility function remains unknown.

The meaning of the additional factorw−1 which appears in the abscissa and the ordinate
of the form suggested in [5] is illustrated in the insets to figure 2. The bottom left-hand
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Figure 2. (a) The dielectric loss curves generated from the CD function, for selected values of
the parametern, normalized by plotting log(ε′′/εs) against log(ν/νs). Dashed lines represent
the power-law characteristics. (b) The same loss curves plotted as log(ε′′νs/εsν) against(1+n)
log(ν/νs). The insets show the meaning of the factorw−1 for both the abscissa and the ordinate
of the scaling form proposed in [5].

inset shows the loss peaks from the main plot of figure 2, plotted as log(ε′′νp/1ε ν)
against(1 + w−1) log(ν/νp) (the kernel of the original expression) while the top right-
hand inset shows them plotted asw−1 log(ε′′νp/1ε ν) againstw−1(1+w−1) log(ν/νp) (the
full expression proposed in [5]). Evidently, multiplication of both the abscissa and the
ordinate by the same factor is not able to influence the slopes of the linear parts of the
master plot. However, this factor reduces the discrepancies that inevitably occur when the
scaling is formulated in terms of the parameters{1ε, νp, w}. The kind of discrepancy
observed in the top right-hand inset to figure 2 substantially agrees with that reported by
Kudlik et al [12] for several low-molecular-weight glass-forming liquids, in the central and
low-frequency region of the scaling plot (see figure 2 of [12]).

As regards the recent interpretation of the scaling procedure given in [14], the above
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considerations gives the unique definition of the scaling parameters{1ε, νp, w} (in contrast
to the approach proposed in [14]). One realizes (see figure 2(a)) that any other definition
of the parameters of the original scaling form exceptνp ≡ νs , 1ε ≡ εs (see the insets
to figure 2(b)) andw ≡ n−1 inevitably results in discrepancies on the scaling diagram.
Accordingly, the above statement provides a necessary condition the scaling procedure has
to follow, assuming power-law limiting behaviour below and in the first region above the
peak inε′′. Surprisingly, the loss curves generated by (2) follow a simpler scaling pattern
than that originally proposed in [5], with no additional factor for both axes. This is contrary
to the original expression where the additional factorw−1 for both axes appears.

Applying the analogous scheme, we consider the more general case of relaxation
showing low-frequency behaviour withm 6 1. The natural way of describing this type of
relaxation in terms of the power-law rules is the Dissado–Hill (DH) susceptibility function
[2], which reads

ε∗(ν)− ε∞
ε0− ε∞ =

(
1+ iν

ν0

)−n
2F1(n, 1−m, 1+ n; [1+ i(ν/ν0)]−1

2F1(n, 1−m, 1+ n; 1)
. (3)

The notation2F1 represents the Gaussian hypergeometric function [15], whilem and
n are line shape parameters which fulfil (1). The DH theory relates the parameters
m and n to the energy redistribution within and among clusters. The mathematically
equivalent susceptibility function was developed by Schönhals and Schlosser [3] from the
considerations of damped diffusional propagation of conformational orientation along the
polymer chains. It can be analytically shown [2, 15], that whenm = 1 (3) reduces to (2).

Figure 3(a) shows three dielectric loss curves generated by (3) for selected values of
0.5 6 m 6 1 and 0.2 6 n 6 1 (the unnormalized half-width of theε′′ peak ranges
between 1.14 and 3). Applying a scheme analogous to that described above, we come to
the generalized scaling relationship. Figure 3(b) shows the loss curves generated by (3)
virtually collapsed onto a single scaling curve. The abscissa is(1+ n/m) log(ν/νs) and
the ordinate ism−1 log(ε′′νms /εsν

m). It is evident that whenm = 1 the above scaling form
reduces to that developed previously in this paper. The bottom left-hand inset to figure 3(b)
shows to what degree the data generated from (3) are collapsed (the differences are about
0.02 of the unit on the vertical axis of the scaling plot). The top right-hand inset shows the
scaling behaviour of the susceptibility function derived from the CvS relaxation function, the
well known Havriliak–Negami (HN) susceptibility function (ε∗(ν) ∝ (1+ (iν/ν0)

m)−n/m),
and the Debye function (a special case of both HN and DH expressions form = n = 1)
as a reference curve. Apparently, apart from the central region of the scaling plot, where
considerable discrepancies occur, all presented curves have a common scaling plot.

Figure 4 presents the experimental dielectric spectra of four glass-forming liquids (two
low-molecular-weight and two polymeric glass-formers) taken from [16] on the common
scaling plot proposed in this paper. The data are for salol (van der Waals liquid),
glycerol (hydrogen bonded liquid), polymethylacrylate (PMA) (side group polymer), and
polyethyleneterephthalate (PET) (main chain polymer). Within the limits of the accuracy
of the measurements, all the data are collapsed onto a single scaling curve. Moreover,
the high-frequency deviation from the power-law behaviour also tends to be universal for
different samples. The top right-hand inset is the magnification of the central (nonlinear)
region of the scaling plot (the solid line represents the HN fit to the data for PET,m = 0.75,
n = 0.28), while the bottom left-hand inset shows the same data on the original scaling plot
suggested in [5].

In this letter we discuss some of the formal aspects of the scaling approach which
must be understood in order to clear up the cause of the recent controversy concerning
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Figure 3. (a) The dielectric loss curves generated from the DH function, for selected values
of the parametersm andn, normalized by plotting log(ε′′/εs) against log(ν/νs). Dashed lines
represent the power-law behaviour. (b) The same loss curves plotted asm−1 log(ε′′νms /εsνm)
against(1+n/m) log(ν/νs). The bottom left inset shows to what degree the generated loss curves
are collapsed in the nonlinear part of the scaling plot. The top right inset shows the scaling
behaviour of the susceptibility function derived from the CvS relaxation function (α = 0.8,
dotted line), the HN susceptibility function (m = 0.7, n = 0.42, dashed line) and the Debye
susceptibility function (a special case of both HN and DH expressions form = n = 1, solid
line).

this concept [12, 14] and to make possible further progress in this matter, towards either
confirming or denying the hypothesis of the universal scaling. We show that the scaling
procedure proposed in [5] can be rationalized and regarded as the approximation of the
simpler relationship formulated in terms of the parameters{εs , νs , n} instead of{1ε, νp,
w}. The scaling relationship formulated this way has a mathematical form analogous to
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Figure 4. Dielectric loss data for a collection of glass-forming liquids, taken from [16], replotted
on the scaling plotm−1 log(ε′′νms /εsνm) against(1+n/m) log(ν/νs). The data are for salol (�,
233 K, van der Waals liquid), glycerol (◦ , 333 K, hydrogen bonded liquid), polymethylacrylate
(PMA) (O, 313.2 K, side group polymer), and polyethyleneterephthalate (PET) (M, 358 K, main
chain polymer). The top right inset shows a magnification of the nonlinear region of the main
plot; the solid line represent the HN fit to the data for PET. The bottom left inset shows the
data from the main plot plotted according to the original scaling relationship proposed in [5].

the original one; however the additional factorw−1, which appears in the abscissa and the
ordinate of the original expression, does not appear in the present one. We show that this
factor acts to reduce the discrepancies which the original procedure inevitably produces. The
formulation presented provides a unique definition of the scaling parameters (no prescription
is known for the optimization mentioned in [14]). Moreover, it can be naturally generalized
for the case of more complex systems which follow the behaviour withm < 1. The
generalized relationship incorporates four parameters{εs , νs , m, n}.

The suggested relationship cannot be regarded as a mathematical property of the DH
susceptibility function (see the bottom left-hand inset to figure 3(b)) or any other function
we have investigated (the top right-hand inset to figure 3(b) shows the scaling plot for a
few of them; see also the top right-hand inset to figure 4). Instead, this approach provides
the description of the shape of the loss spectrum in the vicinity of the peak, which differs
from those already presented in the literature. We show thatνs is the only definition of
the central frequency of the loss peak which is coherent with the scaling approach (neither
νp nor ν0 of any fitting form we have investigated exhibits this property, contrary to the
suggestions in [14]).

The parametersm andn of the procedure presented relate the concept of the universal
scaling to the more sophisticated microscopic interpretation [2, 3] based on the concepts
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of the cooperative dielectric response and propagation of the conformational orientation in
polymer chains. Evidently, verification of the universality suggested in [5] still requires
experimental studies.

We thank Professor Sylwester Rzoska for helpful discussions. This work was partly
supported by the Committee for Scientific Research, Poland (grant No 2P302 08106).
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